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Abstract. We calculate the B → P , B → V (P is the light pseudoscalar meson, V the light vector meson)
form factors in the large-recoil limit in the perturbative QCD approach, including both the vector (axial
vector) and tensor operators. In general there are two leading components φB and φ̄B for the B meson wave
functions. We consider both contributions of them. Sudakov effects (k⊥ and threshold resummation) are
included to regulate the soft end-point singularity. By choosing the hard scale as the maximum virtualities
of the internal particles in the hard b quark decay amplitudes, Sudakov factors can effectively suppress the
long-distance soft contribution. The hard contribution can be dominant in these approaches.

1 Introduction

The most difficult task in calculating the B meson de-
cay amplitude is to treat the hadronic matrix element
〈M1M2|Qi|B〉, which is generally controlled by the soft
non-perturbative dynamics of QCD. Here Qi is one of the
effective low energy transition operators of b quark decays
[1], and M1 and M2 are the final state mesons produced
in B decays. In the earlier years, these hadronic matrix
elements of B decays were treated by an approximate
method, which is called the factorization approach [2]. In
the factorization approach the hadronic matrix element
of the four-fermion operator is approximated as a product
of the matrix elements of two currents, 〈M1M2|Qi|B〉 �
〈M1|j1µ|0〉〈M2|jµ

2 |B〉, where j1µ and jµ
2 are the two rele-

vant currents which can be related to Qi through Qi =
j1µjµ

2 . The matrix element of j1µ sandwiched between
the vacuum and meson state M1 directly defines the de-
cay constant of M1. For example, if M1 is a pseudoscalar
and j1µ is the V –A current, the relation between the ma-
trix element and the decay constant will be 〈M1|j1µ|0〉 =
ifM1pµ, where fM1 and pµ are the decay constant and the
four-momentum of M1, respectively. The other matrix el-
ement 〈M2|jµ

2 |B〉 can generally be decomposed into tran-
sition form factors of B → M2 due to its Lorentz property.
The explicit definition of B meson transition form factors
through such matrix elements can be found in Sects. 4
and 5.

In semi-leptonic decays of the B meson, the decay am-
plitude can be directly related to B meson transition form
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factors without the factorization approximation. For ex-
ample, for B → π�ν̄�, the decay amplitude can be written
in the form

A(pB , pπ) =
GF√

2
Vub(�̄γµ(1 − γ5)ν�)

×〈π(pπ)|ūγµb|B̄(pB)〉, (1)

where the form factors F1(q2) and F0(q2) are defined
through the B → π transition matrix element
〈π(pπ)|ūγµb|B̄(pB)〉 in (14) of Sect. 4. In general the form
factors are functions of the momentum transfer squared,
q2 = (pB − pπ)2. In the region of small recoil, where q2 is
large and/or the final particle is heavy enough, the form
factors are dominated by soft dynamics, which is out of
control of perturbative QCD. However, in the large-recoil
region where q2 → 0, and when the final particle is light
(such as the pion), 5 GeV (mB = 5 GeV) of energy is re-
leased. About half of this energy is taken by the light final
particle, which suggests that large momentum is trans-
ferred in this process and the interaction is mainly short-
distance. Therefore perturbative QCD can be applied to
B to light meson transition form factors in the large-recoil
region.

Before applying the perturbative method in this calcu-
lation, one must separate soft dynamics from hard inter-
actions. This is called factorization in QCD. The factor-
ization theorem has been worked out in [3] based on the
earlier work on the applications of perturbative QCD in
hard exclusive processes [4], where the soft contributions
are factorized into wave functions or distribution ampli-
tudes of mesons, and the hard part is treated by pertur-
bative QCD. Sudakov resummation has been introduced
to suppress the long-distance contributions. Recently this
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approach has been well developed and extensively used to
analyze B decays [5–13]. There is also another direction
to prove factorization in the soft-collinear effective the-
ory [14], which shows correctly the power counting rules
in QCD. In this work we shall calculate a set of B → P
and B → V (P is a light pseudoscalar meson, V a light
vector meson) transition form factors in the perturbative
QCD (PQCD) approach. We use the B wave functions
derived in the heavy quark limit recently [15], and in-
clude Sudakov effects from transverse momentum k⊥ and
threshold resummation [9,16]. In general there are two
Lorentz structures for the B wave functions. If they are
appropriately defined, only one combination gives a large
contribution; the other combination contributes 30%.

A direct calculation of the one-gluon-exchange dia-
gram for the B meson transition form factors suffers from
singularities from the end-point region of the light-cone
distribution amplitude with a momentum fraction x → 0
in the longitudinal direction. In fact, in the end-point re-
gion the parton transverse momenta k⊥ are not negligible.
After including the partons’ transverse momenta, large
double logarithmic corrections αs ln2 k⊥ appear in higher
order radiative corrections and have to be summed to all
orders. In addition to the double logarithm like αs ln2 k⊥,
there are also large logarithms αs ln2 x which should also
be summed to all orders. This is called threshold resum-
mation [16]. The relevant Sudakov factors from both k⊥
and threshold resummation can cure the end-point singu-
larity which makes the calculation of the hard amplitudes
infrared safe. We check the perturbative behavior in the
calculation of the B meson transition form factors and find
that with the hard scale appropriately chosen, Sudakov ef-
fects can effectively suppress the soft dynamics, and the
main contribution comes from the perturbative region.

The content of this paper is as follows. Section 2 treats
the kinematics and the framework of the PQCD approach
used in the calculation of B → P and B → V transition
form factors. Section 3 includes wave functions of the B
meson and the light pseudoscalar and vector mesons. We
give the results of the B → P transition form factors in
Sect. 4, and the B → V transition form factors in Sect. 5.
Section 6 are the numerical results and discussion. Finally
Sect. 7 is a brief summary.

2 The framework

Here we first give our conventions on kinematics. In light-
cone coordinates, the momentum is taken in the form
k =

(
k+√

2
, k−√

2
,k⊥

)
with k± = k0 ± k3 and k⊥ = (k1, k2).

The scalar product of two arbitrary vectors A and B is
A · B = AµBµ = 1

2 (A+B− + A−B+) − A⊥ · B⊥. Our
study is in the rest frame of the B meson. The mass dif-
ference of b quark and B meson is negligible in the heavy
quark limit and we take mb � mB in our calculation.
The masses of the light quarks u, d, s and the light pseu-
doscalar mesons are neglected, while the masses of the
light vector mesons ρ, ω, K∗ are kept in the first order.
The momentum of light meson is chosen in the “+” direc-

a b

Fig. 1a,b. Diagrams contributing to the B → P, V form fac-
tors, where the cross denotes an appropriate gamma matrix

tion. Under these conventions, the momentum of the B
meson is PB = 1√

2
(mB , mB ,0⊥), and in the large-recoil

limit q2 → 0, the momentum of the light pseudoscalar me-
son is PP =

(
mB√

2
, 0,0⊥

)
. For the case of the light vector

meson, its momentum is PV = mB√
2
(1, r2

V ,0⊥) with rV de-
fined as rV ≡ mV /mB . The longitudinal polarization of
the vector meson is εL = 1√

2

(
1

rV
,−rV ,0⊥

)
, its transverse

polarization εT = (0, 0,1⊥). The light spectator momenta
k1 in the B meson and k2 in the light meson are parame-
terized as k1 =

(
0, x1

mB√
2
, k1⊥

)
and k2 =

(
x2

mB√
2
, 0, k2⊥

)
,

where k−
2 is dropped because of its smallness (In the meson

moving along the “plus” direction with large momentum,
the minus component of its parton’s momentum k−

2 should
be very small). We also dropped k+

1 because it vanishes in
the hard amplitudes, which can be simply shown below.

The lowest order diagrams for the B to light meson
transition form factors are displayed in Fig. 1. The hard
amplitudes H are proportional to the propagator of the
gluon, i.e., H ∝ 1/(k2 − k1)2 � 1/(2k2 · k1) � 1/(k+

2 k−
1 ).

It is obvious that only k−
1 is left in the hard amplitude.

Factorization is one of the most important parts of
applying perturbative QCD in hard exclusive processes,
which separates long-distance dynamics from short-
distance dynamics. The factorization formula for the B →
P, V transition matrix element can be written as

〈P, V (P2)|b̄Γµq′|B(p1)〉

=
∫

dx1dx2d2k1⊥d2k2⊥
dz+d2z⊥

(2π)3
dy+d2y⊥

(2π)3

× e−ik2·y〈P, V (P2)|q̄(y)αq′
β(0)|0〉Hβα;σρ

µ eik1·z

× 〈0|b̄(0)ρqσ(z)|B(P1)〉, (2)

where the matrix elements 〈P, V (P2)|q̄(y)αq′
β(0)|0〉 and

〈0|b̄(0)ρqσ(z)|B(P1)〉 define the wave functions of the light
pseudoscalar (vector) meson and the B meson, which ab-
sorb all the soft dynamics. Hβα;σρ

µ denotes the hard am-
plitude, which can be treated by perturbative QCD. β, α,
σ and ρ are Dirac spinor indices. Both the wave functions
and the hard amplitude H are scale dependent. This scale
is usually called the factorization scale. Above this scale,
the interaction is controlled by hard dynamics, while the
interaction below this scale is controlled by soft dynamics,
which is absorbed into wave functions. The factorization
scale is usually taken to be the same as the renormaliza-
tion scale. In practice it is convenient to work in trans-
verse separation coordinate space (b-space) rather than
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the transverse momentum space (k⊥-space). So we shall
make a Fourier transformation

∫
d2k⊥e−ik⊥·b to trans-

form the wave functions and hard amplitude into b-space.
1/b will appear as a typical factorization scale. As the
scale µ > 1/b, the interactions are controlled by the hard
dynamics, and as µ < 1/b the soft dynamics dominates
which is absorbed into the wave functions.

Higher order radiative corrections to wave functions
and hard amplitudes generate large double logarithms
through the overlap of collinear and soft divergences. The
infrared divergence is absorbed into the wave functions.
The double logarithms αs ln2 Pb have been summed to all
orders to give an exponential Sudakov factor e−S(x,b,P );
here P is the typical momentum transferred in the rele-
vant process, and x is the longitudinal momentum fraction
carried by the relevant parton. The resummation proce-
dure has been analyzed and the result has been given in
[3]. We do not repeat it here.

In addition to double logarithms αs ln2 Pb in b-space
(or say k⊥-space equivalently), radiative corrections to
hard amplitudes also produce large logarithms αs ln2 x.
These double logarithms should also be summed to all
orders. This threshold resummation leads to [8]

St(x) =
21+2cΓ (3/2 + c)√

πΓ (1 + c)
[x(1 − x)]c, (3)

where the parameter c = 0.3. This function is normalized
to unity. St(x) vanishes very fast at the end-point region
x → 0 and x → 1. Therefore the factors St(x1) and St(x2)
suppress the end-point region of the meson distribution
amplitudes.

3 The wave functions

In the resummation procedures, the B meson is treated as
a heavy–light system. In general, the B meson light-cone
matrix element can be decomposed as [17,18]∫ 1

0

d4z

(2π)4
eik1·z〈0|q̄α(z)bβ(0)|B̄(pB)〉 (4)

=
i√
2Nc

{
(� pB + mB)γ5

[ � v√
2
φ+

B(k1) +
� n√
2
φ−

B(k1)
]}

βα

= − i√
2Nc

{
(� pB + mB)γ5

[
φB(k1) +

� n√
2
φ̄B(k1)

]}
βα

,

where n = (1, 0,0T), and v = (0, 1,0T) are the unit vec-
tors pointing to the plus and minus directions, respec-
tively. From the above equation, one can see that there
are two Lorentz structures in the B meson wave function.
In general, one should consider both these two Lorentz
structures in the calculations of the B meson decays. The
light-cone distribution amplitudes φ+

B and φ−
B are derived

by Kawamura et al. in the heavy quark limit [15],

φ+
B(x, b) =

fBx√
6Λ2

0
θ(Λ0 − x)J0

[
mBb

√
x(Λ0 − x)

]
, (5)

φ−
B(x, b) =

fB(Λ0 − x)√
6Λ2

0
θ(Λ0 − x)J0

[
mBb

√
x(Λ0 − x)

]
,

with Λ0 = 2Λ̄/MB , and Λ̄ is a free parameter which should
be of the order of mB − mb.

The relations between φB , φ̄B and φ+
B , φ−

B are

φB = φ+
B , φ̄B = φ+

B − φ−
B . (6)

The normalization conditions for these two distribution
amplitudes are∫

d4k1φB(k1) =
fB

2
√

2Nc

,

∫
d4k1φ̄B(k1) = 0. (7)

From (5) and (6), we can see that when x → 0, φ̄B �→ 0,
while φB → 0. The behavior of φB with the definition
(6) is similar to the one defined in previous PQCD cal-
culations [5–13]. Note that our definitions of φB , φ̄B are
different from the previous one in the literature [8]

∫ 1

0

d4z

(2π)4
eik1·z〈0|q̄α(z)bβ(0)|B̄(pB)〉 =

i√
2Nc

×
{

(� pB + mB)γ5

[ � v√
2
φ+

B(k1) +
� n√
2
φ−

B(k1)
]}

βα

= − i√
2Nc

(8)

×
{

(� pB + mB)γ5

[
φ′

B(k1) +
� n− � v√

2
φ̄′

B(k1)
]}

βα

,

with

φ′
B =

φ+
B + φ−

B

2
, φ̄′

B =
φ+

B − φ−
B

2
. (9)

This definition is equivalent to (4) and (6) in the total
amplitude. Although the final numerical results should be
the same, the form factor formulas are simpler using our
new definition. Another outcome is that our new formula
shows explicitly the importance of the leading twist contri-
bution φB , which will be shown later. However, if φ′

B and
φ̄′

B are defined as in (9), both of their contributions are
equivalently important (see the numerical results in Table
2 of [19]). It is easy to check that both φ′

B and φ̄′
B here

have non-zero end-points at x → 0. In this case, φ′
B does

not correspond to the one defined in the previous PQCD
calculations [8,9], where φB → 0, at the end-point, when
x → 0 or 1.

The π, K mesons are treated as a light–light system.
At the B meson rest frame, the K meson (or pion) is
moving very fast; one of k+

1 or k−
1 is zero, depending on

the definition of the z axis. We consider a kaon (or π
meson) moving in the plus direction in this paper. The K
meson distribution amplitude is defined by [20]

〈K−(P )|s̄α(z)uβ(0)|0〉 =
i√
2Nc

∫ 1

0
dxeixP ·z

× [γ5 � PφK(x) + m0γ5φP (x)

− m0σ
µνγ5Pµzν

φσ(x)
6

]
βα

. (10)

For the first and second terms in the above equation, we
can easily get the projector of the distribution amplitude
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in the momentum space. However, for the third term we
should make some effort to transfer it into the momentum
space. By using integration by parts for the third term,
after a few steps, (10) can finally be changed to

〈K−(P )|s̄α(z)uβ(0)|0〉

=
i√
2Nc

∫ 1

0
dxeixP ·z [γ5 � PφK(x) + m0γ5φP (x)

+ m0[γ5(� n � v − 1)]φt
K(x)

]
βα

, (11)

where φt
K(x) = 1

6
d
dxφσ(x), and the vector n is parallel to

the K meson momentum pK . Also, m0K = m2
K/(mu+ms)

is a scale characterized by chiral perturbation theory. For
the π meson, the corresponding scale is defined by m0π =
m2

π/(mu + md).
For the light vector meson ρ, ω and K∗, we need to

distinguish their longitudinal polarization and transverse
polarization. If the K∗ meson (as the other vector mesons)
is longitudinally polarized, we can write its wave function
in longitudinal polarization [8,21]

〈K∗−(P, εL)|d̄α(z)uβ(0)|0〉 =
1√
2Nc

∫ 1

0
dxeixP ·z (12)

× { � ε [� pK∗φt
K∗(x) + mK∗φK∗(x)

]
+ mK∗φs

K∗(x)
}

.

The second term in the above equation is the leading twist
wave function (twist-2), while the first and third terms
are sub-leading twist (twist-3) wave functions. If the K∗
meson is transversely polarized, its wave function is then

〈K∗−(P, εT)|d̄α(z)uβ(0)|0〉

=
1√
2Nc

∫ 1

0
dxeixP ·z { � ε [� pK∗φT

K∗(x) + mK∗φv
K∗(x)

]
+ imK∗εµνρσγ5γ

µενnρvσφa
K∗(x)} . (13)

Here the leading twist wave function for the transversely
polarized K∗ meson is the first term which is proportional
to φT

K∗ .

4 B → P form factors

The B → P form factors are defined as follows:

〈P (p1)|q̄γµb|B̄(pB)〉

=
[
(pB + p1)µ − m2

B − m2
P

q2 qµ

]
F1(q2)

+
m2

B − m2
P

q2 qµF0(q2), (14)

where q = pB − p1. In order to cancel the poles at q2 = 0,
we must impose the condition

F1(0) = F0(0).

That means in the large-recoil limit, that we need only cal-
culate one independent form factor for the vector current.

For the tensor operator, there is also only one indepen-
dent form factor, which is important for the semi-leptonic
decay B → K�+�−:

〈P (p1)|q̄σµνb|B̄(pB)〉 = i
[
p1µqν − qµp1ν

]

× 2FT(q2)
mB + mP

, (15)

〈P (p1)|q̄σµνγ5b|B̄(pB)〉 = εµναβp1
αqβ

× 2FT(q2)
mB + mP

. (16)

In the previous section we have discussed the wave
functions of the factorization formula in (2). In this sec-
tion, we will calculate the hard part H. This part in-
volves the current operators and the necessary hard gluon
connecting the current operator and the spectator quark.
Since the final results are expressed as integrations of the
distribution function variables, we will show the whole am-
plitude for each diagram including wave functions and Su-
dakov factors.

There are two types of diagrams contributing to the
B → K form factors which are shown in Fig. 1. The sum
of their amplitudes is given by

F1(q2 = 0) = F0(q2 = 0)

= 8πCF m2
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {he(x1, x2, b1, b2) (φB(x1, b1)

× [
(1 + x2)φA

K(x2, b2)

+ rK(1 − 2x2)
(
φP

K(x2, b2) + φt
K(x2, b2)

)]
− φ̄B(x1, b1)

[
φA

K(x2, b2)

− rKx2
(
φP

K(x2, b2) + φt
K(x2, b2)

)])
× αs(t1e) exp[−Sab(t1e)]

+2rKφP
K(x2, b2)φB(x1, b1)αs(t2e)he(x2, x1, b2, b1)

× exp[−Sab(t2e)]
}

, (17)

where rK = m0K/mB = m2
K/[mB(ms + md)]; CF = 4/3

is a color factor. The function he, the scales tie and the Su-
dakov factors Sab are displayed at the end of this section.

For the B → π form factors, one needs only replace the
above K meson distribution amplitudes φi

K by pion dis-
tribution amplitudes φi

π and replace the scale parameter
rK by rπ = m0π/mB = m2

π/[mB(mu + md)], respectively.
For the tensor operator we get the form factor formu-

las:

FT(q2 = 0)

= 8πCF m2
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {he(x1, x2, b1, b2) (φB(x1, b1)

× [
φA

K(x2, b2) − x2rKφP
K(x2, b2)

+ rK(2 + x2)φt
K(x2, b2)

] − φ̄B(x1, b1)

× [
φA

K(x2, b2) − rKφP
K(x2, b2) + rKφt

K(x2, b2)
])
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× αs(t1e) exp[−Sab(t1e)]
+ 2rKhe(x2, x1, b2, b1)αs(t2e)φB(x1, b1)

× φP
K(x2, b2) exp[−Sab(t2e)]

}
. (18)

In the above equations, we have used the assumption
that x1 << x2. Since the light quark momentum fraction
x1 in the B meson is peaked at the small region, while the
quark momentum fraction x2 of the K meson is peaked
around 0.5, this is not a bad approximation. The numeri-
cal results also show that this approximation makes very
little difference in the final result. After using this approx-
imation, all the diagrams are functions of k−

1 = x1mB/
√

2
of the B meson only, independent of the variable of k+

1 .
The function he, coming from the Fourier transform of

the hard amplitude H, is

he(x1, x2, b1, b2) = K0 (
√

x1x2mBb1)
× [θ(b1 − b2)K0 (

√
x2mBb1) I0 (

√
x2mBb2) (19)

+ θ(b2 − b1)K0 (
√

x2mBb2) I0 (
√

x2mBb1)] St(x2),

where J0 is the Bessel function and K0, I0 are modified
Bessel functions.

The Sudakov factors used in the text are defined as

Sab(t) = s
(
x1mB/

√
2, b1

)
+ s

(
x2mB/

√
2, b2

)

+ s
(
(1 − x2)mB/

√
2, b2

)

− 1
β1

[
ln

ln(t/Λ)
− ln(b1Λ)

+ ln
ln(t/Λ)

− ln(b2Λ)

]
, (20)

where the functions s(q, b) are defined in Appendix A of
[6]. The hard scales ti in the above equations are chosen as
the largest scale of the virtualities of the internal particles
in the hard b quark decay diagrams,

t1e = max(
√

x2mB , 1/b1, 1/b2) ,

t2e = max(
√

x1mB , 1/b1, 1/b2) . (21)

5 B → V form factors

For the B → K∗ form factors, we first define the axial
vector current part,

〈K∗(p1)|q̄γµγ5b|B̄(pB)〉
= i

(
ε∗
µ − ε∗ · q

q2 qµ

)
(mB + mK∗)A1(q2)

− i
(

(pB + p1)µ − (m2
B − m2

K∗)
q2 qµ

)
(ε∗ · q)

A2(q2)
mB + mK∗

+ i
2mK∗(ε∗ · q)

q2 qµA0(q2), (22)

where ε∗ is the polarization vector of the K∗ meson. To
cancel the poles at q2 = 0, we must have

2mK∗A0(0) = (mB + mK∗)A1(0)
−(mB − mK∗)A2(0). (23)

For the vector current, only one form factor V is defined:

〈K∗(p1)|q̄γµb|B̄(pB)〉 = εµναβεν∗pα
Bpβ

1
2V (q2)

(mB + mK∗)
. (24)

For the tensor operators, three form factors are defined:

〈K∗(p1)|q̄σµνb|B̄(pB)〉
= −iεµναβεα∗pβ

1T1(q2) − iεµναβεα∗pβ
BT2(q2)

−iT3(q2)
(pB · ε∗)
pB · p1

εµναβpα
1 pβ

B , (25)

〈K∗(p1)|q̄σµνγ5b|B̄(pB)〉
=

(
pµ
1p∗ν

B − p∗µ
B pν

1
) (pB · ε∗)

pB · p1
T3(q2)

+ (ε∗µpν
B − pµ

Bε∗ν) T2(q2)

+ [ε∗µpν
1 − pµ

1 ε∗ν ] T1(q2). (26)

Another frequently used set of tensor form factors are de-
fined as below [24]:

〈K∗(p1)|q̄σµνqν (1 + γ5)
2

b|B̄(pB)〉
= 2iεµναβεν∗pα

Bpβ
1T ′

1(q
2) (27)

+
[
ε∗
µ(m2

B − m2
K∗) − (q · ε∗)(p1 + pB)µ

]
T ′

2(q
2)

+ (q · ε∗)
[
qµ − q2

m2
B − m2

K∗
(p1 + pB)µ

]
T ′

3(q
2).

They are useful for the discussion of the flavor changing
neutral current decay B → K∗γ and B → K∗�+�−. The
relations between the two set of form factors are

T ′
1(q

2) =
1
4

[
T1(q2) + T2(q2)

]
, (28)

T ′
2(q

2) =
1
4

[
T1(q2) + T2(q2)

+
q2

m2
B − m2

K∗

(
T2(q2) − T1(q2)

)]
, (29)

T ′
3(q

2) =
1
4

[
T1(q2) − T2(q2) − m2

B − m2
K∗

pB · p1
T3(q2)

]
. (30)

It is easy to see from the above that in the large-recoil
limit q2 = 0, T ′

1(0) = T ′
2(0).

As for the B → ρ, B → ω form factors, the defini-
tion is similar to the above, just replacing K∗ by ρ and ω
respectively.

Calculating the corresponding amplitude for Fig. 1a
and b, we get the formulas for the form factors at large
recoil:

A0(q2 = 0) = 8πCF m2
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {
αs(t1e) exp[−Sab(t1e)] [φB(x1, b1)

× ((1 + x2)φK∗(x2, b2)
+(1 − 2x2)rK∗

(
φt

K∗(x2, b2) + φs
K∗(x2, b2)

))
− φ̄B(x1, b1)
× (

φK∗(x2, b2) − x2rK∗
(
φt

K∗(x2, b2) + φs
K∗(x2, b2)

))]
× he(x1, x2, b1, b2)
+ 2rK∗φB(x1, b1)φs

K∗(x2, b2)αs(t2e)he(x2, x1, b2, b1)
× exp[−Sab(t2e)]

}
, (31)
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where rK∗ = mK∗/mB . The form factor A0 is the one con-
tributing to the non-leptonic B decays B → PV , where
the vector meson is longitudinally polarized. This is shown
in the above equation, (31): the formula depends only
on the longitudinal wave functions. On the other hand,
the form factor A1 contributing to the B → V V decays
depends only on the transverse wave functions, which is
shown below:

A1(q2 = 0) = 8πCF mB(mB − mK∗)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {
he(x1, x2, b1, b2) exp[−Sab(t1e)]

× αs(t1e) [φB(x1, b1)

× (
φT

K∗(x2, b2) + (2 + x2)rK∗φv
K∗(x2, b2)

−rK∗x2φ
a
K∗(x2, b2))

− φ̄B(x1, b1)

× (
φT

K∗(x2, b2) + rK∗φv
K∗(x2, b2) − rK∗φa

K∗(x2, b2)
)]

+ rK∗φB(x1, b1)[φv
K∗(x2, b2) + φa

K∗(x2, b2)]
× αs(t2e)he(x2, x1, b2, b1) exp[−Sab(t2e)]

}
. (32)

The form factor A2 can be calculated from (23), using the
above (31) and (32) for A0 and A1. It depends on both
transverse and longitudinal wave functions.

The vector form factor V , depending only on trans-
verse wave functions, is expressed as

V (q2 = 0) = 8πCF mB(mB + mK∗)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

{
αs(t1e)he(x1, x2, b1, b2)

× (
φB(x1, b1)

[
φT

K∗(x2, b2) + (2 + x2)rK∗φa
K∗(x2, b2)

− rK∗x2φ
v
K∗(x2, b2)]

−φ̄B(x1, b1)
[
φT

K∗(x2, b2) + rK∗φa
K∗(x2, b2)

− rK∗φv
K∗(x2, b2)]) exp[−Sab(t1e)]

+ rK∗he(x2, x1, b2, b1) [φv
K∗(x2, b2) + φa

K∗(x2, b2)] (33)
× φB(x1, b1) αs(t2e) exp[−Sab(t2e)]

}
.

As for the tensor form factors, T1 and T2, contributing
to the B → K∗γ decay, depend only on transverse wave
functions:

T1(q2 = 0) = 16πCF m2
B

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {
αs(t1e)he(x1, x2, b1, b2) (φB(x1, b1)

× [
(1 + x2)φT

K∗(x2, b2) + 2(1 − x2)rK∗φa
K∗(x2, b2)

− 2x2rK∗φv
K∗(x2, b2)]

− φ̄B(x1, b1)
[
φT

K∗(x2, b2) + (1 − x2)rK∗φa
K∗(x2, b2)

− (1 + x2)rK∗φv
K∗(x2, b2)]) exp[−Sab(t1e)]

+ rK∗he(x2, x1, b2, b1) [φv
K∗(x2, b2) + φa

K∗(x2, b2)] (34)
× φB(x1, b1)αs(t2e) exp[−Sab(t2e)]

}
.

T2(q2 = 0) = 16πCF m2
B

×
∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2 αs(t1e)he(x1, x2, b1, b2)rK∗

× [φv
K∗(x2, b2) − φa

K∗(x2, b2)]
× (

φB(x1, b1) − φ̄B(x1, b1)
)
exp[−Sab(t1e)] , (35)

while the form factor T3 depends on both longitudinal and
transverse wave functions:

T3(q2 = 0) = 16πCF m2
B

∫ 1

0
dx1dx2

∫ ∞

0
b1db1b2db2

× {
αs(t1e)he(x1, x2, b1, b2) (φB(x1, b1)

× [
φK∗(x2, b2) + (2 + x2)rK∗φt

K∗(x2, b2)
−x2rK∗φs

K∗(x2, b2)]
− φ̄B(x1, b1)

[
φK∗(x2, b2) + rK∗φt

K∗(x2, b2)

−rK∗φs
K∗(x2, b2)]) exp[−Sab(t1e)]

+ 2rK∗he(x2, x1, b2, b1)φs
K∗(x2, b2) (36)

× φB(x1, b1)αs(t2e)
× exp[−Sab(t2e)]

}
rK∗ − 2r2

K∗T1 − T2 .

6 Numerical calculations and discussion

In the numerical calculations we use

Λ
(f=4)
MS

= 250 MeV, fπ = 132 MeV, fK = 160 MeV,

fB = 190 MeV, m0π = 1.4 GeV, m0K = 1.7 GeV,

MB = 5.2792 GeV, fK∗ = 220 MeV, fT
K∗ = 180 MeV,

MW = 80.41 GeV, fρ = 217 MeV, fT
ρ = 160 MeV,

fω = 195 MeV, fT
ω = 160MeV. (37)

The distribution amplitudes φi
π(x), φi

K(x), φi
ρ(x) (φi

ω(x))
and φi

K∗(x) of the light mesons used in the numerical cal-
culation are listed in Appendix A.

Figure 2a displays the contributions to the B → π
transition form factor at the large-recoil limit q2 → 0
from different ranges of αs/π, where the hard scale t is
chosen as (21), i.e., the maximum virtuality of both in-
ternal quarks and gluons in the hard b quark decay dia-
grams. It shows that most of the contribution comes from
the range αs/π < 0.3, implying that the average scale is
around

√
ΛQCDmB . For other B to light meson transition

form factor calculations, we have very similar results. It is
observed that with the hard scale chosen in (21), PQCD
is applicable to B → light meson transition form factors.
A recent study shows that PQCD is even applicable to
B → D(∗) form factors [9]. However, a different perturba-
tive percentage distribution over αs/π was observed in [19,
22]. We check the reason which causes this difference and
find that the most important reason is the way of choosing
the hard scale t. If the hard scale is chosen as the maxi-
mum virtuality of only the gluon and other transverse mo-
mentum scales, i.e., t ≡ max(

√
x1x2mB , 1/b1, 1/b2), the

perturbative percentage distribution will be similar to the
one in [19,22], as shown in Fig. 2b. Therefore the way of
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Fig. 2a,b. Contributions to the B → π transition form factors (F Bπ(0)) from different ranges of αs/π, a with the hard scale
chosen as virtualities of internal particles including both quarks and gluons; b the hard scale chosen as virtualities of only
internal gluons

Table 1. B meson transition form factors at q2 = 0 with the hard scale chosen in (21), and the numbers in
parentheses are results without the contribution of φ̄B

Process F0(0) = F1(0) FT(0)

B → π 0.292 ± 0.030 0.278 ± 0.028
(0.199) (0.189)

B → K 0.321 ± 0.036 0.311 ± 0.033
(0.231) (0.223)

Process V (0) A0(0) A1(0) A2(0) T1(0) T2(0) T3(0)

B → ρ 0.318 ± 0.032 0.366 ± 0.036 0.25 ± 0.02 0.21 ± 0.01 0.56 ± 0.05 0.013 ± 0.001 0.06 ± 0.01
(0.226) (0.256) (0.17) (0.14) (0.41) (0.004) (0.05)

B → ω 0.305 ± 0.030 0.347 ± 0.036 0.24 ± 0.02 0.20 ± 0.02 0.53 ± 0.05 0.012 ± 0.001 0.06 ± 0.01
(0.212) (0.250) (0.16) (0.13) (0.38) (0.003) (0.05)

B → K∗ 0.406 ± 0.042 0.455 ± 0.047 0.30 ± 0.03 0.24 ± 0.02 0.69 ± 0.08 0.007 ± 0.001 0.09 ± 0.01
(0.293) (0.336) (0.21) (0.16) (0.51) (-0.001) (0.07)

choosing the hard scale is one of the important ingredients
in the PQCD approach, which deserves more concern.1
Provided that the virtuality of the internal quark momen-
tum (longitudinal) must appear as a characteristic scale
in the hard diagram, in general it should be taken into ac-
count. Therefore we think that it is reasonable to choose
both the virtualities of internal quarks and gluons as the
hard scale. Certainly the most powerful proof of this point
should be performed under the help of a numerical calcu-
lation of higher order loop corrections. However, such a
deeper discussion of this problem is beyond the scope of
this paper; it shall be left to other attempts.

The results of the B → P, V light meson transition
form factors are given in Table 1 with the hard scale cho-
sen in (21). Compared with previous PQCD calculations
on some B → P, V transition form factors [8,9,23], the
current work is different from them mainly on two points:
(1) The B meson wave function used here is the one de-

1 By numerical check we find that these two different choices
of the hard scale only slightly affect the magnitude of the form
factors. For example it can only change the B → π from factor
by a few percent.

rived from the equation of motion in heavy quark effec-
tive theory [15]. There is only one free parameter in the
functions of the distribution amplitudes, Λ̄. We show the
results for Λ̄ = (700 ± 50) MeV in Table 1. All the form
factors are sensitive to this parameter, i.e. sensitive to the
shape of the B meson distribution amplitudes.
(2) Two Lorentz structure terms of B meson wave func-
tion, both φB and φ̄B defined in (4) and (6), are taken
into account in this work. To see how much the φ̄B term
contributes, we give the results without the contribution
of φ̄B in the parentheses in Table 1. They show that the
contribution of φ̄B is about 30%. The dominant contri-
bution comes from the φB term. This result shows that
simply dropping the contribution of φ̄B is not a good ap-
proximation.

We compare some of the results calculated in this work
with lattice calculation by the UKQCD collaboration [25]
in Table 2. It shows that our results are consistent with
theirs.

The B → K∗ form factors are useful for the calculation
of the flavor changing neutral current process B → K∗γ
and B → K∗�+�−, which have been discussed many times
[26]. We show some of them in Table 3 for comparison. It
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Table 2. Form factors at q2 = 0 for B → π and B → ρ transitions calculated
in this work and UKQCD

F0(0) = F1(0) V (0) A0(0) A1(0) A2(0)

UKQCD [25] 0.27 ± 0.11 0.35+0.06
−0.05 0.30+0.06

−0.04 0.27+0.05
−0.04 0.26+0.05

−0.03

This work 0.292 0.318 0.366 0.250 0.210

Table 3. Some form factors at q2 = 0 for B → K∗ transitions calculated
in this work and some other works

T ′
1(0) = T ′

2(0) A0(0) A1(0)

Quark model [27] 0.155 0.32 0.26
QCD sum rule [24] 0.19 ± 0.03 0.3 ± 0.03 0.37 ± 0.03
Light-cone sum rule [28] 0.18 0.27 0.36
Lattice QCD [25] 0.16+0.02

−0.01 0.33 0.29
Dispersion quark model [29] 0.177 0.44 0.33
This work 0.175 0.455 0.297

is easy to see that our results agree with the lattice cal-
culations [25] and the results calculated using the lattice-
constrained dispersion quark model [29].

7 Summary

We have calculated B → P and B → V transition form
factors in the PQCD approach. We not only calculated
the B to light meson transition form factors defined in
vector and axial vector currents, but also the form factors
defined in tensor currents q̄σµνb and q̄σµνγ5b, which can
be used to study semi-leptonic and radiative B decays in-
duced by magnetic penguin operators q̄σµν(1 + γ5)bFµν .
With the hard scale appropriately chosen, Sudakov ef-
fects can effectively suppress the long-distance dynamics,
which makes the short-distance contribution dominate.
The characteristic scale in B to light meson transition
processes is around

√
ΛQCDmB .

We considered both of the two Lorentz structures of
the B meson wave functions, and found that the contri-
bution of φ̄B defined in (4) and (6) is about 30%.

Finally we compared our results with a lattice calcula-
tion, some quark model and QCD sum rule calculations;
we found that they are consistent with our results.
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A Wave functions of light mesons
used in the numerical calculation

For the light meson wave function, we neglect the b de-
pendence part, which is not important in the numerical
analysis.

The distribution amplitude φA
π for the twist-2 wave

function and the distribution amplitudes φP
π and φt

π of
the twist-3 wave functions are taken from [20]:

φA
π (x) =

3fπ√
6

x(1 − x)

×
[
1 + 0.44C

3/2
2 (t) + 0.25C

3/2
4 (t)

]
, (38)

φP
π (x) =

fπ

2
√

6

[
1 + 0.43C

1/2
2 (t) + 0.09C

1/2
4 (t)

]
, (39)

φt
π(x) =

fπ

2
√

6
t
[
1 + 0.55(10x2 − 10x + 1)

]
, (40)

where t = 1−2x. The Gegenbauer polynomials are defined
by

C
1/2
2 (t)=

1
2
(3t2 − 1), C

1/2
4 (t)=

1
8
(35t4 − 30t2 + 3),

C
3/2
2 (t)=

3
2
(5t2 − 1), C

3/2
4 (t)=

15
8

(21t4 − 14t2 + 1), (41)

whose coefficients correspond to m0π = 1.4 GeV.
We choose the different distribution amplitudes of the

ρ meson’s longitudinal wave function as [21]

φρ(x) =
3fρ√

6
x(1 − x)

[
1 + 0.18C

3/2
2 (t)

]
, (42)

φt
ρ(x) =

fT
ρ

2
√

6

{
3t2 + 0.3t2

[
5t2 − 3

]

+ 0.21
[
3 − 30t2 + 35t4

]}
, (43)

φs
ρ(x) =

3fT
ρ

2
√

6
t
[
1 + 0.76(10x2 − 10x + 1)

]
. (44)

For the transverse ρ meson we use [21]

φT
ρ (x) =

3fT
ρ√
6

x(1 − x)
[
1 + 0.2C

3/2
2 (t)

]
, (45)
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φv
ρ(x) =

fρ

2
√

6

{
3
4
(1 + t2) + 0.24(3t2 − 1)

+ 0.12(3 − 30t2 + 35t4)
}

, (46)

φa
ρ(x) =

3fρ

4
√

6
t
[
1 + 0.93(10x2 − 10x + 1)

]
. (47)

For the ω meson, we use the same as the above ρ meson,
except exchanging the decay constant fρ with fω.

We use φA
K of the K meson twist-2 wave function and

φP
K and φt

K of the twist-3 wave functions from [20,21,30]:

φA
K(x) =

3fK√
6

x(1 − x)
[
1 + 0.51t + 0.3{5t2 − 1}]

,

(48)

φP
K(x) =

fK

2
√

6

[
1 + 0.12(3t2 − 1)

− 0.12(3 − 30t2 + 35t4)/8
]
, (49)

φt
K(x) =

fK

2
√

6
t
[
1 + 0.35(10x2 − 10x + 1)

]
, (50)

whose coefficients correspond to m0K = 1.7 GeV.
We choose the light-cone distribution amplitudes of

the K∗ meson longitudinal wave function as [21]

φK∗(x) =
3fK∗√

6
x(1 − x)

[
1 + 0.57t + 0.07C

3/2
2 (t)

]
, (51)

φt
K∗(x) =

fT
K∗

2
√

6

{
0.3t(3t2 + 10t − 1) + 1.68C

1/2
4 (t) (52)

+ 0.06t2(5t2 − 3) + 0.36[1 − 2t − 2t ln(1 − x)]
}
,

φs
K∗(x) =

fT
K∗

2
√

6

{
3t

[
1 + 0.2t + 0.6(10x2 − 10x + 1)

]
(53)

− 0.12x(1 − x) + 0.36[1 − 6x − 2 ln(1 − x)]} .

The following light-cone distribution amplitudes of the K∗
transverse wave function are used:

φT
K∗(x) =

3fT
K∗√
6

x(1 − x)
[
1 + 0.6t + 0.04C

3/2
2 (t)

]
, (54)

φv
K∗(x) =

fK∗

2
√

6

{
3
4
(1 + t2 + 0.44t3) + 0.4C

1/2
2 (t)

+ 0.88C
1/2
4 (t) + 0.48[2x + ln(1 − x)]

}
, (55)

φa
K∗(x) =

fK∗

4
√

6

{
3t

[
1 + 0.19t + 0.81(10x2 − 10x + 1)

]
−1.14x(1 − x)
+0.48[1 − 6x − 2 ln(1 − x)]} . (56)
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